Provides a tidy interface for solving the linear assignment problem using 'Hungarian' or 'Jonker-Volgenant' algorithms. Supports rectangular matrices, NA/Inf masking, and data frame inputs.
Usage
lap_solve(
x,
source = NULL,
target = NULL,
cost = NULL,
maximize = FALSE,
method = "auto",
forbidden = NA
)Arguments
- x
Cost matrix, data frame, or tibble. If a data frame/tibble, must include columns specified by
source,target, andcost.- source
Column name for source/row indices (if
xis a data frame)- target
Column name for target/column indices (if
xis a data frame)- cost
Column name for costs (if
xis a data frame)- maximize
Logical; if TRUE, maximizes total cost instead of minimizing (default: FALSE)
- method
Algorithm to use. One of:
"auto" (default): automatically selects best algorithm
"jv": 'Jonker-Volgenant' algorithm (general purpose, fast)
"hungarian": Classic 'Hungarian' algorithm
"auction": 'Bertsekas' auction algorithm (good for large dense problems)
"sap": Sparse assignment (good for sparse/rectangular problems)
"hk01": 'Hopcroft-Karp' for binary/uniform costs
- forbidden
Value to mark forbidden assignments (default: NA). Can also use Inf.
Value
A tibble with columns:
source: row/source indicestarget: column/target indicescost: cost of each assignmenttotal_cost: total cost (attribute)
Examples
# Matrix input
cost <- matrix(c(4, 2, 5, 3, 3, 6, 7, 5, 4), nrow = 3)
lap_solve(cost)
# Data frame input
library(dplyr)
df <- tibble(
source = rep(1:3, each = 3),
target = rep(1:3, times = 3),
cost = c(4, 2, 5, 3, 3, 6, 7, 5, 4)
)
lap_solve(df, source, target, cost)
# With NA masking (forbidden assignments)
cost[1, 3] <- NA
lap_solve(cost)
# Grouped data frames
df <- tibble(
sim = rep(1:2, each = 9),
source = rep(1:3, times = 6),
target = rep(1:3, each = 3, times = 2),
cost = runif(18, 1, 10)
)
df |> group_by(sim) |> lap_solve(source, target, cost)