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No Signs of Saturation
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• Regional accumulation of alien species well-documented (Juozaitienė
et al., 2023; Seebens et al., 2017) but local-scale effects less explored

• High numbers of aliens in regional species pools, but low 
representation in local communities, mostly a time-lag phenomenon
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European Perspective - Habitat Origins

• 7’300 alien plants are recorded across 55 European territories, 
most = neophytes (Kalusová et al. 2024)

• Habitats shaped by disturbance and environmental variability,
(coasts, floodplains, and urban margins) → main entry points for 
alien species. (Kalusová et al. 2013)

• Interconnected habitats likely facilitate expansion of alien species 
into new habitat types

Gilles Colling, Page 3



Residence Time and Habitat Expansion
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• To test whether alien species with longer residence times in the 
regional species pool occur across
(a) more local communities of the same habitat type or
(b) more local communities of different habitat types.
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Dataset

• Data for ASAAS compiles 1.9 million 
vegetation plots from more than 100 
regional databases across Europe

• 56 Countries and admin. regions
• 9 Decades (1930-2020)
• 1,357 neophyte plant species
• EUNIS classification
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• EVA (The European Vegetation Archive) 



Habitat Classification
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• EUNIS Level 2 aggregated into 18 habitats

Intermediate resolution: Level 1 too coarse, Level 2 too detailed 



The Problem with Counting Habitats
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• If we observe a species in grasslands and wetlands…

a) is it: Habitat preference, or sampling where it is common?
b) Raw occurrence conflates distribution with habitat availability
c) EVA is sampled opportunistically: some habitats heavily, some 

sparse

Need: Compare species to local habitat availability
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• Fidelity, IndVal, diversity indices = designed for systematic surveys

• Problems within EVA data:
• Denominators unstable when habitats sampled unevenly
• Shannon diversity increases with sample size regardless of true 

distribution and isn’t well defined for “habitat diversity”
• Does not answer: “Is the species more common than random 

chance given local availability?”
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• Accounting for sampling: 
→ Reorganize data into hexagonal grid cells
• Within each hexcell we collect:

• Neophyte habitat distribution (p)
• Background habitat distribution (q)

• Within each habitat (per decade):
• Null-model: p ≈ q
• Overrepresented: p > q

Comparing Habitat use across 863 km2 x 10 years hexcells
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…
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Species (green) vs background (grey) with 95% CI band
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• Clear null model
• Unlike diversity indices, we test against defined expectation
• Interpretation: “Does the species prefer this habitat?”

• Local comparison
• Each hexcell x decade is independent of global sampling
• Oversampled regions don’t dominate the signal

• Categorical output
• Species is overrepresented (1) or not (0) per habitat
• Directly usable as response
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Biologically, two distinct processes are involved:

1. Can the species extend beyond one habitat? (generalist potential 
vs. specialist constraint)
• Many species remain constraint 
• Outcome: Binary (single vs multiple)

2. How many additional habitats does it occupy once it expands?
• Given expansion, what determines breath?
• Outcome: Counts (number of additional habitats)

Methods
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𝑌𝑖 ~ TruncHurdleNegBin(𝜋𝑖 , 𝜇𝑖 , 𝜙)

• Hurdle component (logit link)

logit 𝜋𝑖 = 𝛼(hur.) + 𝑿𝒊𝛽
(hur.) + 𝑢county[𝑖]

hur.
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𝑌𝑖 ~ TruncHurdleNegBin(𝜋𝑖 , 𝜇𝑖 , 𝜙)

• Hurdle component (logit link)

logit 𝜋𝑖 = 𝛼(hur.) + 𝑿𝒊𝛽
(hur.) + 𝑢county[𝑖]

hur.

• Count component (log link)

log 𝜇𝑖 = 𝛼(count) + 𝑿𝒊𝛽
(count) + 𝑢county[𝑖]

count

• Predictors: residence time (ordered), growth form, life cycle, dispersal
• Random effects: country intercepts

Methods
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Results

• Probability of > 1 habitat:
• 0-20  years: 17%
• >200 years: 57%

• Expected habitat count:
• 0-20  years: 1.21
• >200 years: 2.04 

• Most pairwise contrasts 
significant
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Results

• Hurdle component (P of > 1 habitat )
• Trees, vines: reduced prob. (OR 0.57-0.69)
• Long-lived perennials: reduced prob. (OR 0.55)
• Human-mediated dispersal: reduced prob. (OR 0.73)

*OR =  Odds ratio
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Results

• Hurdle component (P of > 1 habitat )
• Trees, vines: reduced prob. (OR 0.57-0.69)
• Long-lived perennials: reduced prob. (OR 0.55)
• Human-mediated dispersal: reduced prob. (OR 0.73)

• Count component (expected habitats given > 1)
• Long-lived perennials: +43% more habitats (IRR 1.43)
• Medium-lived perennials: +20% more habitats (IRR 1.20)

*OR =  Odds ratio, IRR = Incidence Rate Ratio
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Results
• High Invasion:

• Man made & ruderal

• High Resistance:
• Alpine grasslands
• Bogs & poor mires

• Intermediate
• Mesic grasslands
• Deciduous forests
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Results
• First habitat:

• Man-made & ruderal (31%)
• Dry grasslands (16%)
• Broadleaved dec. (12%)

• Common Establishment Patterns:
• Dry grasslands man-made
• Man-made → mesic
• Man-made → wetlands

• Third habitat
• Mesic & wet grasslands = 

common tertiary site
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Caveats
• Cross-sectional design

• Cannot directly observe temporal dynamics within species
• Infer from cohort comparison (long residence time vs short)

• Presence-only
• No abundance data
• Cannot distinguish low-density occurrence

• Transition analysis
• Continental aggregation, no local colonization pathways
• Species are introduced independent across regions
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Take Home
• Methodological

• Overrepresentation framework controls for local habitat availability in 
opportunistic dataset

• Ecological
• Habitat breadth grows with residence time → strong evidence of 

ongoing spread

• Invasion debt
• The residence time effect continues up to >200 years → no sign of 

equilibrium  



Thank you
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