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No saturation in the accumulation of alien species
worldwide
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Corollary

* Regional accumulation of alien species well-documented (Juozaitiene
et al., 2023; Seebens et al., 2017) but local-scale effects less explored
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Corollary

* Regional accumulation of alien species well-documented (Juozaitiene
et al., 2023; Seebens et al., 2017) but local-scale effects less explored

* High numbers of aliens in regional species pools, but low
representation in local communities, mostly a time-lag phenomenon
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European Perspective - Habitat Origins

« 7’300 alien plants are recorded across 55 European territories,
most = neophytes (Kalusova et al. 2024)
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European Perspective - Habitat Origins

« 7’300 alien plants are recorded across 55 European territories,
most = neophytes (Kalusova et al. 2024)

* Habitats shaped by disturbance and environmental variability,
(coasts, floodplains, and urban margins) > main entry points for
alien species. (Kalusova et al. 2013)
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European Perspective - Habitat Origins

« 7’300 alien plants are recorded across 55 European territories,
most = neophytes (Kalusova et al. 2024)
* Habitats shaped by disturbance and environmental variability,

(coasts, floodplains, and urban margins) > main entry points for
alien species. (Kalusova et al. 2013)

* |nterconnected habitats likely facilitate expansion of alien species
into new habitat types

Gilles Colling, Page 3



Residence Time and Habitat Expansion

Species in their native range:
the donor species pool

- Species introduced in their alien range
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ALIEN MACROECOLOGY:
Richness, distribution, abundance, spatial & trait relationships
MAcroecological Framework for Invasive Aliens of alien biota at large scales

(MAFIA): disentangling large-scale context
dependence in biological invasions
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Hypotheses

* Totest whether alien species with longer residence times in the
regional species pool occur across
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Hypotheses

* Totest whether alien species with longer residence times in the
regional species pool occur across
(a) more local communities of the same habitat type or
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Hypotheses

* Totest whether alien species with longer residence times in the
regional species pool occur across
(a) more local communities of the same habitat type or
(b) more local communities of different habitat types.
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Dataset

* EVA (The European Vegetation Archive)

 Data for ASAAS compiles 1.9 million
vegetation plots from more than 100
regional databases across Europe
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Dataset

* EVA (The European Vegetation Archive)

* Data for ASAAS compiles 1.9 million
vegetation plots from more than 100
regional databases across Europe

* 56 Countries and admin. regions
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Dataset

* EVA (The European Vegetation Archive)

* Data for ASAAS compiles 1.9 million
vegetation plots from more than 100
regional databases across Europe

* 56 Countries and admin. regions

Number of Unique Plots

'_g =~  *9Decades (1930-2020)
B 51:?20
I 101200

Gilles Colling, Page 6



Dataset

* EVA (The European Vegetation Archive)

* Data for ASAAS compiles 1.9 million
vegetation plots from more than 100
regional databases across Europe

* 56 Countries and admin. regions

Number of Unique Plots
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Dataset

* EVA (The European Vegetation Archive)

* Data for ASAAS compiles 1.9 million
vegetation plots from more than 100
regional databases across Europe

* 56 Countries and admin. regions

Number of Unique Plots

@:‘; * 9 Decades (1930-2020)

B~ * 1,357 neophyte plant species

B -2
e EUNIS classification
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Habitat Classification

* EUNIS Level 2 aggregated into 18 habitats

Group Examples

Man-made & ruderal Arable, gardens, artificial grasslands
Broadleaved deciduous  Temperate deciduous forests
Mesic & wet grasslands Hay meadows, wet grasslands

Dry grasslands Xerophytic grasslands
Alpine & subalpine High-altitude grasslands
Bogs & poor mires Peat-accumulating wetlands

Intermediate resolution: Level 1 too coarse, Level 2 too detailed
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The Problem with Counting Habitats

* |fwe observe a species in grasslands and wetlands...

a) isit: Habitat preference, or sampling where itis common?

b) Raw occurrence conflates distribution with habitat availability

c) EVAis sampled opportunistically: some habitats heavily, some
sparse

Need: Compare species to local habitat availability
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How to measure Habitat profiles?

* Fidelity, IndVal, diversity indices = designed for systematic surveys
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How to measure Habitat profiles?

* Fidelity, IndVal, diversity indices = designed for systematic surveys

* Problems within EVA data:
* Denominators unstable when habitats sampled unevenly
« Shannon diversity increases with sample size regardless of true
distribution and isn’t well defined for “habitat diversity”
* Does not answer: “Is the species more common than random
chance given local availability?”
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Methods

Comparing Habitat use across 863 km2 x 10 years hexcells

* Accounting for sampling:

> Reorganize data into hexagonal grid cells
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Methods

Comparing Habitat use across 863 km2 x 10 years hexcells

* Accounting for sampling:

> Reorganize data into hexagonal grid cells
* Within each hexcell we collect:

* Neophyte habitat distribution (p)

* Background habitat distribution (q)
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Methods

Comparing Habitat use across 863 km2 x 10 years hexcells

* Accounting for sampling:

> Reorganize data into hexagonal grid cells
* Within each hexcell we collect:

* Neophyte habitat distribution (p)

* Background habitat distribution (q)
* Within each habitat (per decade):

* Null-model: p=q

* Overrepresented: p>q
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® Cell with species
® Cell without species
® Plot with species
® Plot without species

Sort into
groups

>
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@ Cell with species

® Cell without species
® Plot with species Cell ID Plot IDs Decade
® Plot without species

ID_XX, ID_XY Decade X

Sort into
groups

> Record Plots per cell across decades

i
Cell ID Plot IDs Decade
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@ Cell with species

® Cell without species
® Plot with species Cell ID Plot IDs Decade
® Plot without species

ID_XX, ID_XY Decade X

o Record Plots per cell across decades

Cell ID Plot IDs Decade

Cell X ID_YY, ID_YX, ID_Z,..

Record across all cells
with species presence

Sort into /
groups

Habitat 1 Habitat 2

Decade 1 - Background | Decade 1 - Background

> Decade 1 - Species Decade 1 - Species

Make habitat prof"e Decade 2 - Background | Decade 2 - Background
per SpECieS Decade 2 - Species Decade 2 - Species
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Methods
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Methods

* Clear null model
* Unlike diversity indices, we test against defined expectation
* Interpretation: “Does the species prefer this habitat?”
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Methods

* Clear null model
* Unlike diversity indices, we test against defined expectation
* [Interpretation: “Does the species prefer this habitat?”

* Local comparison

* Each hexcell x decade comparison independent of global sampling
* Oversampledregions don’t dominate the signal
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Methods

* Clear null model
* Unlike diversity indices, we test against defined expectation
* [Interpretation: “Does the species prefer this habitat?”

* Local comparison
* Each hexcell x decade is independent of global sampling
* Oversampledregions don’t dominate the signal

« Categorical output

e Speciesis overrepresented (1) or not (0) per habitat
* Directly usable as response
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Methods

Biologically, two distinct processes are involved:

1. Can the species extend beyond one habitat? (generalist potential
vS. specialist constraint)
* Many species remain constraint
* Qutcome: Binary (single vs multiple)
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Methods

Biologically, two distinct processes are involved:

1. Canthe species extend beyond one habitat? (generalist potential
vS. specialist constraint)
* Many species remain constraint
* Qutcome: Binary (single vs multiple)

2. How many additional habitats does it occupy once it expands?

 Given expansion, what determines breath?
* Qutcome: Counts (humber of additional habitats)
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Methods
Y; ~ TruncHurdleNegBin(m;, u;, @)
* Hurdle component (logit link)

(hur.)
county|[i]

logit(m;) = o) + x;phur) 4 g
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Methods
Y; ~ TruncHurdleNegBin(m;, u;, )

* Hurdle component (logit link)

(hur.)
county|i]

logit(m;) = a(ur) 4 X, pH0ur) 4 4
e Count component (log link)

log(,ui) = gf(count) 4 Xiﬁ(count) + u(count)

county|i]
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Methods
Y; ~ TruncHurdleNegBin(m;, u;, ¢)

* Hurdle component (logit link)

(hur.)
county|i]

lOgit(T[i) — o (hur) + Xilg(hur.) +u
* Count component (log link)
log(u;) = g(count) Xilg(count) n u(count)

county|i]

* Predictors: residence time (ordered), growth form, life cycle, dispersal
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Methods
Y; ~ TruncHurdleNegBin(m;, u;, ¢)

* Hurdle component (logit link)

(hur.)
county|i]

logit(m;) = a(ur) 4 X, pH0ur) 4 4
e Count component (log link)

log(‘ui) — g(count) Xilg(count) + u(count)

county|i]

* Predictors: residence time (ordered), growth form, life cycle, dispersal
* Random effects: country intercepts
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Probability of spread (>1 habitat)

Observed habitat count
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* 0-20 years: 1.21
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Results
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Results

* Hurdle component (P of > 1 habitat)
* Trees, vines: reduced prob. (OR 0.57-0.69)
* Long-lived perennials: reduced prob. (OR 0.55)
* Human-mediated dispersal: reduced prob. (OR 0.73)

*OR = Odds ratio

Gilles Colling, Page 16



Results

* Hurdle component (P of > 1 habitat)
* Trees, vines: reduced prob. (OR 0.57-0.69)
* Long-lived perennials: reduced prob. (OR 0.55)
* Human-mediated dispersal: reduced prob. (OR 0.73)

e Count component (expected habitats given > 1)
* Long-lived perennials: +43% more habitats (IRR 1.43)
* Medium-lived perennials: +20% more habitats (IRR 1.20)

*OR = Odds ratio, IRR =Incidence Rate Ratio
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Results

Dry grasslands 18 7 8 12 15 50% ® High Invasion:

Mesic & wet grasslands 11 6 13 17 12
Alpine & subalpine grasslands 0 0 1 0 0 1 M an ma d e & Fu d era l_
Wooded grasslands

Broadleaved deciduous forests

Broadleaved evergreen & anthropogenic forests

* High Resistance:

Coniferous forests

Temperate & Mediterranean heath & scrub

* Alpine grasslands

Neophytes
overrepresented (%)

Arctic—alpine scrub 0 1 (] 3 0
Aquatic plant communities 2 6 2 2 1 .
o * Bogs & poor mires
Wetlands & riparian tall herbs 13 10 10 7 7

Bogs & poor mires

o T IO RSN

Marine & coastal

OIN
w
w

Inland salt steppes & salt marshes 0 1 1 0 o I nter med iate

Scree & rock outcrops 12 1 2 2 3

Unvegetated or sparse ground

0 0 1 2 3
Man-made & ruderal habitats - - - - - 0% .
0-20 21-50  51-100  101-200  >200 e Deciduous forests

(n=51) (n=287) (n=745) (n=2461) (n=1404)
Residence time (years)
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Results

Coniferols forests

oatie & sorus * First habitat:
e Man-made & ruderal (31%)
* Dry grasslands (16%)
2 * Broadleaved dec. (12%)
! Mes“w%gms'a"ds 87 |owowws « Common Establishment Patterns:

‘ Temperate & Mediterranean PY Dry grassla ndS — man_made

Mesic & wet grasslands

Broadleaved deciduous forests I Temperate & Medite%nean heath & scrub

Man-made & ruderal habitats

. eaths/ & scrub
Man-made & ruderal habitats

Marine & coastal

* Man-made = mesic

Dry grasslands
Other

| e Man-made > wetlands
* Third habitat

Mediterranean heath & scrub [ '
4
-y

Mesic & wet grasslands I Broadieaved d

- Wetlands & riparian
Coniferous forests — - & B Marine & coastal ¢ M e S I C & Wet gra S S la n d S =
Heaths & scrub m N . . o
other [ We“a""s&"%"a“ i |w<=°ded grasslands common tertiary site
1st habitat (n=983) 2nd habitat (n=736) 3rd habitat
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Caveats

* Cross-sectional design
* Cannotdirectly observe temporal dynamics within species
* |nferfrom cohort comparison (long residence time vs short)
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Caveats

* Cross-sectional design
* Cannotdirectly observe temporal dynamics within species
* Infer from cohort comparison (long residence time vs short)

* Presence-only

* No abundance data
* Cannotdistinguish low-density occurrence
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Caveats

* Cross-sectional design
* Cannotdirectly observe temporal dynamics within species
* Infer from cohort comparison (long residence time vs short)

* Presence-only
* No abundance data
 Cannotdistinguish low-density occurrence

* Transition analysis

* Continental aggregation, no local colonization pathways
* Species areintroduced independent across regions
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Take Home

* Methodological
 QOverrepresentation framework controls for local habitat availability in
opportunistic dataset
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Take Home

* Methodological
* QOverrepresentation framework controls for local habitat availability in
opportunistic dataset

* Ecological

 Habitat breadth grows with residence time — strong evidence of
ongoing spread
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Take Home

* Methodological
* QOverrepresentation framework controls for local habitat availability in

opportunistic dataset

* Ecological
* Habitat breadth grows with residence time — strong evidence of

ongoing spread
e |nvasion debt

* Theresidence time effect continues up to >200 years — no sign of
equilibrium
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